近日,我校材料科学与工程学院左如忠教授科研团队和澳大利亚卧龙岗大学张树君教授合作,成功制备出具有正交Pnma对称性、纳米电畴形貌的铌酸钠(NaNbO3,NN)基无铅弛豫反铁电固溶体陶瓷材料,其放电储能密度值到达W~12.2 J/cm3,是迄今块体陶瓷材料储能密度文献报道的最高值,实现了介质陶瓷放电储能性能的新突破。该研究工作近期以题为“Ultrahigh energy storage density in NaNbO3-based lead-free relaxor antiferroelectric ceramics with nanoscale domains”被接收发表在国际著名学术期刊《先进功能材料》(Adv. Funct. Mater.)上(影响因子15.621,Nature Index收录期刊),论文的第一作者为祁核博士。
固态介质电容器因其高功率密度和超快充放电速率而成为脉冲功率系统的核心部件。其中,反铁电陶瓷在电场下可逆的相变过程使其具有高储能密度,在介质储能材料中具有明显的优势。然而,该可逆相变过程的滞后性同时也会给正常反铁电陶瓷带来储能效率较低且疲劳特性差的弊端。左如忠教授的研究团队经过大量的研究发现,反铁电电畴尺寸的降低不仅能够有效提高反铁电-铁电相变的驱动电场,进而提高充电储能密度,而且可以降低充放电过程中的极化滞后性而显著提高储能效率。同时,相变电流的降低使得反铁电材料具有更高的击穿场强。
该研究团队采用传统固相合成技术,在具有高禁带宽度的铌酸钠反铁电基体的基础上,通过(Bi0.5Na0.5)TiO3(BNT)部分取代NN,引入局域随机场来调控反铁电陶瓷的电畴尺寸,从而在室温下获得了具有纳米尺度电畴(~30-50 nm)的弛豫反铁电陶瓷。通过原位电场同步辐射研究发现大的局域随机电场能够明显抑制反铁电纳米电畴在电场下的长大过程以及其后的反铁电-铁电的相变过程,使得该材料能够在高达36 kV/mm电场以下具有几乎无滞后的类线性极化响应;而只在电场>36 kV/mm的第二阶段才会表现出反铁电-铁电相变以及低滞后的电畴取向。研究表明,同时具备了高的相变驱动电场和高的击穿场强是NN基弛豫反铁电陶瓷具有优异储能性能的重要物理基础。另外,该体系材料的储能密度(>7.4 J/cm3)和储能效率(>73%)在25-200 oC范围内保持良好的稳定性。这些优异的储能性能使得NN基无铅弛豫反铁电陶瓷在脉冲功率系统中具有巨大的应用潜力。
这一研究工作是该团队继近期发表在J. Mater. Chem. A, 7, 3971-3978 (2019)(https://pubs.rsc.org/en/content/articlehtml/2019/ta/c8ta12232f)上有关BNT基无铅弛豫反铁电储能介质陶瓷材料之后的又一代表性的研究成果。
论文信息:He Qi, Ruzhong Zuo,* Aiwen Xie, Ao Tian, Jian Fu, Yi Zhang, and Shujun Zhang,* Adv. Funct. Mater., doi: 10.1002/adfm.201903877, (2019)
http://ceramics.hfut.edu.cn/2018/1221/c5063a203536/page.htm

图1 0.76NNBNT-0.24BNT陶瓷的储能性能

图2 0.76NNBNT-0.24BNT弛豫反铁电陶瓷室温电畴结构、选区衍射和高分辨TEM照片

图3 0.76NNBNT-0.24BNT弛豫反铁电陶瓷电场下相结构演变